Finite element approximation of a sixth order nonlinear degenerate parabolic equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite element approximation of a sixth order nonlinear degenerate parabolic equation

We consider a finite element approximation of the sixth order nonlinear degenerate parabolic equation ut = ∇.( b(u)∇∆u), where generically b(u) := |u| for any given γ ∈ (0,∞). In addition to showing well-posedness of our approximation, we prove convergence in space dimensions d ≤ 3. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. Finally some num...

متن کامل

Finite element approximation of a fourth order nonlinear degenerate parabolic equation

We consider a fully practical nite element approximation of the fourth order nonlinear degenerate parabolic equation u t + r:(b(u)ru)= 0; where generically b(u) := juj p for any given p 2 (0; 1). An iterative scheme for solving the resulting nonlinear discrete system is analysed. In addition to showing well-posedness of our approximation, we prove convergence in one space dimension. Finally som...

متن کامل

A Sixth-Order Nonlinear Parabolic Equation for Quantum Systems

The global-in-time existence of weak nonnegative solutions to a sixth-order nonlinear parabolic equation in one space dimension with periodic boundary conditions is proved. The equation arises from an approximation of the quantum drift-diffusion model for semiconductors and describes the evolution of the electron density in the semiconductor crystal. The existence result is based on two techniq...

متن کامل

Finite Element Approximation for Degenerate Parabolic Equations. an Application of Nonlinear Semigroup Theory

Finite element approximation for degenerate parabolic equations is considered. We propose a semidiscrete scheme provided with order-preserving and L contraction properties, making use of piecewise linear trial functions and the lumping mass technique. Those properties allow us to apply nonlinear semigroup theory, and the wellposedness and stability in L and L∞, respectively, of the scheme are e...

متن کامل

Optimal order finite element approximation for a hyperbolic‎ ‎integro-differential equation

‎Semidiscrete finite element approximation of a hyperbolic type‎ ‎integro-differential equation is studied. The model problem is‎ ‎treated as the wave equation which is perturbed with a memory term.‎ ‎Stability estimates are obtained for a slightly more general problem.‎ ‎These, based on energy method, are used to prove optimal order‎ ‎a priori error estimates.‎

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2004

ISSN: 0029-599X,0945-3245

DOI: 10.1007/s00211-003-0479-4